Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Biomedicines ; 12(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38540142

RESUMO

The murine models of Alzheimer's disease (AD) have advanced our understanding of the pathophysiology. In vivo studies of the retina using optical coherence tomography (OCT) have complemented histological methods; however, the lack of standardisation in OCT methodologies for murine models of AD has led to significant variations in the results of different studies. A literature search in PubMed and Scopus has been performed to review the different methods used in these models using OCT and to analyse the methodological characteristics of each study. In addition, some recommendations are offered to overcome the challenges of using OCT in murine models. The results reveal a lack of consensus on OCT device use, retinal area analysed, segmentation techniques, and analysis software. Although some studies use the same OCT device, variations in other parameters make the direct comparison of results difficult. Standardisation of retinal analysis criteria in murine models of AD using OCT is crucial to ensure consistent and comparable results. This implies the application of uniform measurement and segmentation protocols. Despite the absence of standardisation, OCT has proven valuable in advancing our understanding of the pathophysiology of AD.

2.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542089

RESUMO

Glaucoma is a neurodegenerative disease that causes blindness. In this study, we aimed to evaluate the protective role of cilastatin (CIL), generally used in the treatment of nephropathologies associated with inflammation, in an experimental mouse model based on unilateral (left) laser-induced ocular hypertension (OHT). Male Swiss mice were administered CIL daily (300 mg/kg, i.p.) two days before OHT surgery until sacrifice 3 or 7 days later. Intraocular Pressure (IOP), as well as retinal ganglion cell (RGC) survival, was registered, and the inflammatory responses of macroglial and microglial cells were studied via immunohistochemical techniques. Results from OHT eyes were compared to normotensive contralateral (CONTRA) and naïve control eyes considering nine retinal areas and all retinal layers. OHT successfully increased IOP values in OHT eyes but not in CONTRA eyes; CIL did not affect IOP values. Surgery induced a higher loss of RGCs in OHT eyes than in CONTRA eyes, while CIL attenuated this loss. Similarly, surgery increased macroglial and microglial activation in OHT eyes and to a lesser extent in CONTRA eyes; CIL prevented both macroglial and microglial activation in OHT and CONTRA eyes. Therefore, CIL arises as a potential effective strategy to reduce OHT-associated damage in the retina of experimental mice.


Assuntos
Glaucoma , Doenças Neurodegenerativas , Hipertensão Ocular , Masculino , Camundongos , Animais , Doenças Neurodegenerativas/complicações , Glaucoma/etiologia , Hipertensão Ocular/tratamento farmacológico , Hipertensão Ocular/patologia , Pressão Intraocular , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Cilastatina/uso terapêutico , Modelos Animais de Doenças
3.
Front Cell Neurosci ; 18: 1354569, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333055

RESUMO

Glaucoma is a neurodegenerative disease of the retina characterized by the irreversible loss of retinal ganglion cells (RGCs) leading to visual loss. Degeneration of RGCs and loss of their axons, as well as damage and remodeling of the lamina cribrosa are the main events in the pathogenesis of glaucoma. Different molecular pathways are involved in RGC death, which are triggered and exacerbated as a consequence of a number of risk factors such as elevated intraocular pressure (IOP), age, ocular biomechanics, or low ocular perfusion pressure. Increased IOP is one of the most important risk factors associated with this pathology and the only one for which treatment is currently available, nevertheless, on many cases the progression of the disease continues, despite IOP control. Thus, the IOP elevation is not the only trigger of glaucomatous damage, showing the evidence that other factors can induce RGCs death in this pathology, would be involved in the advance of glaucomatous neurodegeneration. The underlying mechanisms driving the neurodegenerative process in glaucoma include ischemia/hypoxia, mitochondrial dysfunction, oxidative stress and neuroinflammation. In glaucoma, like as other neurodegenerative disorders, the immune system is involved and immunoregulation is conducted mainly by glial cells, microglia, astrocytes, and Müller cells. The increase in IOP produces the activation of glial cells in the retinal tissue. Chronic activation of glial cells in glaucoma may provoke a proinflammatory state at the retinal level inducing blood retinal barrier disruption and RGCs death. The modulation of the immune response in glaucoma as well as the activation of glial cells constitute an interesting new approach in the treatment of glaucoma.

4.
Methods Mol Biol ; 2708: 49-56, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37558959

RESUMO

Glaucoma is a neurodegenerative disease that leads to the loss of retinal ganglion cells (RGC) and thus to blindness. There are numerous experimental models used for the study of this pathology. Among the different models, episcleral vein photocoagulation is one of the most widely used. In this model there is a transient increase in intraocular pressure that returns to normal values about 7 days after induction of ocular hypertension (OHT). In addition, typical glaucoma changes, such as loss of RGC, thinning of the optic nerve fiber layer, and glial activation, occur in this model. All these changes have been described in detail over time after OHT induction. In this chapter, we describe the detailed method of OHT induction in Swiss albino mice by diode laser photocoagulation of limbal and episcleral veins.


Assuntos
Glaucoma , Doenças Neurodegenerativas , Hipertensão Ocular , Camundongos , Animais , Doenças Neurodegenerativas/patologia , Hipertensão Ocular/complicações , Hipertensão Ocular/patologia , Glaucoma/complicações , Glaucoma/patologia , Células Ganglionares da Retina , Pressão Intraocular , Lasers , Modelos Animais de Doenças
5.
Front Psychol ; 14: 1124830, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37484098

RESUMO

Introduction: Alzheimer's disease (AD) is the most common form of dementia affecting the central nervous system, and alteration of several visual structures has been reported. Structural retinal changes are usually accompanied by changes in visual function in this disease. The aim of this study was to analyse the differences in visual function at different stages of the pathology (family history group (FH+), mild cognitive impairment (MCI), mild AD and moderate AD) in comparison with a control group of subjects with no cognitive decline and no family history of AD. Methods: We included 53 controls, 13 subjects with FH+, 23 patients with MCI, 25 patients with mild AD and, 21 patients with moderate AD. All were ophthalmologically healthy. Visual acuity (VA), contrast sensitivity (CS), colour perception, visual integration, and fundus examination were performed. Results: The analysis showed a statistically significant decrease in VA, CS and visual integration score between the MCI, mild AD and moderate AD groups compared to the control group. In the CS higher frequencies and in the colour perception test (total errors number), statistically significant differences were also observed in the MCI, mild AD and moderate AD groups with respect to the FH+ group and also between the control and AD groups. The FH+ group showed no statistically significant difference in visual functions compared to the control group. All the test correlated with the Mini Mental State Examination score and showed good predictive value when memory decline was present, with better values when AD was at a more advanced stage. Conclusion: Alterations in visual function appear in subjects with MCI and evolve when AD is established, being stable in the initial stages of the disease (mild AD and moderate AD). Therefore, visual psychophysical tests are a useful, simple and complementary tool to neuropsychological tests to facilitate diagnosis in the preclinical and early stages of AD.

6.
Biomedicines ; 11(7)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37509663

RESUMO

This study aimed to analyze the evolution of visual changes in cognitively healthy individuals at risk for Alzheimer's disease (AD). Participants with a first-degree family history of AD (FH+) and carrying the Ε4+ allele for the ApoE gene (ApoE ε4+) underwent retinal thickness analysis using optical coherence tomography (OCT) and visual function assessments, including visual acuity (VA), contrast sensitivity (CS), color perception, perception digital tests, and visual field analysis. Structural analysis divided participants into FH+ ApoE ε4+ and FH- ApoE ε4- groups, while functional analysis further categorized them by age (40-60 years and over 60 years). Over the 27-month follow-up, the FH+ ApoE ε4+ group exhibited thickness changes in all inner retinal layers. Comparing this group to the FH- ApoE ε4- group at 27 months revealed progressing changes in the inner nuclear layer. In the FH+ ApoE ε4+ 40-60 years group, no progression of visual function changes was observed, but an increase in VA and CS was maintained at 3 and 12 cycles per degree, respectively, compared to the group without AD risk at 27 months. In conclusion, cognitively healthy individuals at risk for AD demonstrated progressive retinal structural changes over the 27-month follow-up, while functional changes remained stable.

7.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37108198

RESUMO

Tuning and controlling the magnetic properties of nanomaterials is crucial to implement new and reliable technologies based on magnetic hyperthermia, spintronics, or sensors, among others. Despite variations in the alloy composition as well as the realization of several post material fabrication treatments, magnetic heterostructures as ferromagnetic/antiferromagnetic coupled layers have been widely used to modify or generate unidirectional magnetic anisotropies. In this work, a pure electrochemical approach has been used to fabricate core (FM)/shell (AFM) Ni@(NiO,Ni(OH)2) nanowire arrays, avoiding thermal oxidation procedures incompatible with integrative semiconductor technologies. Besides the morphology and compositional characterization of these core/shell nanowires, their peculiar magnetic properties have been studied by temperature dependent (isothermal) hysteresis loops, thermomagnetic curves and FORC analysis, revealing the existence of two different effects derived from Ni nanowires' surface oxidation over the magnetic performance of the array. First of all, a magnetic hardening of the nanowires along the parallel direction of the applied magnetic field with respect their long axis (easy magnetization axis) has been found. The increase in coercivity, as an effect of surface oxidation, has been observed to be around 17% (43%) at 300 K (50 K). On the other hand, an increasing exchange bias effect on decreasing temperature has been encountered when field cooling (3T) the oxidized Ni@(NiO,Ni(OH)2) nanowires below 100 K along their parallel lengths.


Assuntos
Nanoporos , Nanofios , Nanofios/química , Óxido de Alumínio , Níquel/química , Nanotecnologia/métodos
8.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36982157

RESUMO

Ocular neurodegenerative diseases such as glaucoma, diabetic retinopathy, and age-related macular degeneration are common retinal diseases responsible for most of the blindness causes in the working-age and elderly populations in developed countries. Many of the current treatments used in these pathologies fail to stop or slow the progression of the disease. Therefore, other types of treatments with neuroprotective characteristics may be necessary to allow a more satisfactory management of the disease. Citicoline and coenzyme Q10 are molecules that have neuroprotective, antioxidant, and anti-inflammatory properties, and their use could have a beneficial effect in ocular neurodegenerative pathologies. This review provides a compilation, mainly from the last 10 years, of the main studies that have been published on the use of these drugs in these neurodegenerative diseases of the retina, analyzing the usefulness of these drugs in these pathologies.


Assuntos
Doenças Neurodegenerativas , Doenças Retinianas , Humanos , Idoso , Citidina Difosfato Colina/farmacologia , Citidina Difosfato Colina/uso terapêutico , Retina/patologia , Doenças Retinianas/tratamento farmacológico , Doenças Retinianas/patologia , Doenças Neurodegenerativas/patologia
9.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769051

RESUMO

Dravet syndrome (DS) is an epileptic encephalopathy caused by mutations in the Scn1a gene encoding the α1 subunit of the Nav1.1 sodium channel, which is associated with recurrent and generalized seizures, even leading to death. In experimental models of DS, histological alterations have been found in the brain; however, the retina is a projection of the brain and there are no studies that analyze the possible histological changes that may occur in the disease. This study analyzes the retinal histological changes in glial cells (microglia and astrocytes), retinal ganglion cells (RGCs) and GABAergic amacrine cells in an experimental model of DS (Syn-Cre/Scn1aWT/A1783V) compared to a control group at postnatal day (PND) 25. Retinal whole-mounts were labeled with anti-GFAP, anti-Iba-1, anti-Brn3a and anti-GAD65/67. Signs of microglial and astroglial activation, and the number of Brn3a+ and GAD65+67+ cells were quantified. We found retinal activation of astroglial and microglial cells but not death of RGCs and GABAergic amacrine cells. These changes are similar to those found at the level of the hippocampus in the same experimental model in PND25, indicating a relationship between brain and retinal changes in DS. This suggests that the retina could serve as a possible biomarker in DS.


Assuntos
Epilepsias Mioclônicas , Canal de Sódio Disparado por Voltagem NAV1.1 , Camundongos , Animais , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/patologia , Retina/patologia , Convulsões/genética , Microglia/patologia , Modelos Animais de Doenças
10.
Alzheimers Res Ther ; 15(1): 19, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36694201

RESUMO

BACKGROUND: The earliest pathological features of Alzheimer's disease (AD) appear decades before the clinical symptoms. The pathology affects the brain and the eye, leading to retinal structural changes and functional visual alterations. Healthy individuals at high risk of developing AD present alterations in these ophthalmological measures, as well as in resting-state electrophysiological activity. However, it is unknown whether the ophthalmological alterations are related to the visual-related electrophysiological activity. Elucidating this relationship is paramount to understand the mechanisms underlying the early deterioration of the system and an important step in assessing the suitability of these measures as early biomarkers of disease. METHODS: In total, 144 healthy subjects: 105 with family history of AD and 39 without, underwent ophthalmologic analysis, magnetoencephalography recording, and genotyping. A subdivision was made to compare groups with less demographic and more risk differences: 28 high-risk subjects (relatives/APOEɛ4 +) and 16 low-risk (non-relatives/APOEɛ4 -). Differences in visual acuity, contrast sensitivity, and macular thickness were evaluated. Correlations between each variable and visual-related electrophysiological measures (M100 latency and time-frequency power) were calculated for each group. RESULTS: High-risk groups showed increased visual acuity. Visual acuity was also related to a lower M100 latency and a greater power time-frequency cluster in the high-risk group. Low-risk groups did not show this relationship. High-risk groups presented trends towards a greater contrast sensitivity that did not remain significant after correction for multiple comparisons. The highest-risk group showed trends towards the thinning of the inner plexiform and inner nuclear layers that did not remain significant after correction. The correlation between contrast sensitivity and macular thickness, and the electrophysiological measures were not significant after correction. The difference between the high- and low- risk groups correlations was no significant. CONCLUSIONS: To our knowledge, this paper is the first of its kind, assessing the relationship between ophthalmological and electrophysiological measures in healthy subjects at distinct levels of risk of AD. The results are novel and unexpected, showing an increase in visual acuity among high-risk subjects, who also exhibit a relationship between this measure and visual-related electrophysiological activity. These results have not been previously explored and could constitute a useful object of research as biomarkers for early detection and the evaluation of potential interventions' effectiveness.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Retina/patologia , Acuidade Visual , Encéfalo/patologia , Tomografia de Coerência Óptica/métodos , Biomarcadores
11.
Antioxidants (Basel) ; 11(11)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36358522

RESUMO

Tauopathies such as Alzheimer's disease are characterized by the accumulation of neurotoxic aggregates of tau protein. With aging and, especially, in Alzheimer's patients, the inducible enzyme heme oxygenase 1 (HO-1) progressively increases in microglia, causing iron accumulation, neuroinflammation, and neurodegeneration. The retina is an organ that can be readily accessed and can reflect changes that occur in the brain. In this context, we evaluated how the lack of microglial HO-1, using mice that do not express HO-1 in microglia (HMO-KO), impacts retinal macro and microgliosis of aged subjects (18 months old mice) subjected to tauopathy by intrahippocampal delivery of AAV-hTauP301L (TAU). Our results show that although tauopathy, measured as anti-TAUY9 and anti-AT8 positive immunostaining, was not observed in the retina of WT-TAU or HMO-KO+TAU mice, a morphometric study of retinal microglia and macroglia showed significant retinal changes in the TAU group compared to the WT group, such as: (i) increased number of activated microglia, (ii) retraction of microglial processes, (iii) increased number of CD68+ microglia, and (iv) increased retinal area occupied by GFAP (AROA) and C3 (AROC3). This retinal inflammatory profile was reduced in HMO-KO+TAU mice. Conclusion: Reduction of microglial HO-1 could be beneficial to prevent tauopathy-induced neuroinflammation.

12.
Alzheimers Res Ther ; 14(1): 79, 2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35659054

RESUMO

BACKGROUND: Two main genetic risks for sporadic Alzheimer's disease (AD) are a family history and ɛ4 allele of apolipoprotein E. The brain and retina are part of the central nervous system and share pathophysiological mechanisms in AD. METHODS: We performed a cross-sectional study with 30 participants without a family history of sporadic AD (FH-) and noncarriers of ApoE ɛ4 (ApoE ɛ4-) as a control group and 34 participants with a family history of sporadic AD (FH+) and carriers of at least one ɛ4 allele (ApoE ɛ4+). We analyzed the correlations between macular volumes of retinal layers and thickness of the peripapillary retinal nerve fiber layer (pRNFL) measured by optical coherence tomography (OCT) with the brain area parameters measured by magnetic resonance imaging (MRI) in participants at high genetic risk of developing AD (FH+ ApoE ɛ4+). RESULTS: We observed a significant volume reduction in the FH+ ApoE ɛ4+ group compared with the control group in some macular areas of (i) macular RNFL (mRNFL), (ii) inner plexiform layer (IPL), (iii) inner nuclear layer (INL), and (iv) outer plexiform layer (OPL). Furthermore, in the FH+ ApoE ɛ4+ group, the retinal sectors that showed statistically significant volume decrease correlated with brain areas that are affected in the early stages of AD. In the same group, the peripapillary retinal nerve fiber layer (pRNFL) did not show statistically significant changes in thickness compared with the control group. However, correlations of these sectors with the brain areas involved in this disease were also found. CONCLUSIONS: In cognitively healthy participants at high genetic risk of developing sporadic forms of AD, there are significant correlations between retinal changes and brain areas closely related to AD such as the entorhinal cortex, the lingual gyrus, and the hippocampus.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Apolipoproteínas E/genética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Estudos Transversais , Humanos , Retina/diagnóstico por imagem , Retina/patologia , Tomografia de Coerência Óptica/métodos
13.
J Clin Med ; 11(11)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35683633

RESUMO

In 103 subjects with a high genetic risk of developing Alzheimer's disease (AD), family history (FH) of AD and ApoE ɛ4 characterization (ApoE ɛ4) were analyzed for changes in the retinal vascular network by OCTA (optical coherence tomography angiography), and AngioTool and Erlangen-Angio-Tool (EA-Tool) as imaging analysis software. Retinal vascularization was analyzed by measuring hypercholesterolemia (HCL) and high blood pressure (HBP). Angio-Tool showed a statistically significant higher percentage of area occupied by vessels in the FH+ ApoE ɛ4- group vs. in the FH+ ApoE ɛ4+ group, and EA-Tool showed statistically significant higher vascular densities in the C3 ring in the FH+ ApoE ɛ4+ group when compared with: i)FH- ApoE ɛ4- in sectors H3, H4, H10 and H11; and ii) FH+ ApoE ɛ4- in sectors H4 and H12. In participants with HCL and HBP, statistically significant changes were found, in particular using EA-Tool, both in the macular area, mainly in the deep plexus, and in the peripapillary area. In conclusion, OCTA in subjects with genetic risk factors for the development of AD showed an apparent increase in vascular density in some sectors of the retina, which was one of the first vascular changes detectable. These changes constitute a promising biomarker for monitoring the progression of pathological neuronal degeneration.

14.
Biomedicines ; 10(5)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35625676

RESUMO

Macroglia (astrocytes and Müller glia) may play an important role in the pathogenesis of glaucoma. In a glaucoma mouse model, we studied the effects of unilateral laser-induced ocular hypertension (OHT) on macroglia in OHT and contralateral eyes at different time points after laser treatment (1, 3, 5, 8 and 15 days) using anti-GFAP and anti-MHC-II, analyzing the morphological changes, GFAP-labelled retinal area (GFAP-PA), and GFAP and MHC-II immunoreactivity intensities ((GFAP-IRI and MHC-II-IRI)). In OHT and contralateral eyes, with respect to naïve eyes, at all the time points, we found the following: (i) astrocytes with thicker somas and more secondary processes, mainly in the intermediate (IR) and peripheral retina (PR); (ii) astrocytes with low GFAP-IRI and only primary processes near the optic disc (OD); (iii) an increase in total GFAP-RA, which was higher at 3 and 5 days, except for at 15 days; (iv) an increase in GFAP-IRI in the IR and especially in the PR; (v) a decrease in GFAP-IRI near the OD, especially at 1 and 5 days; (vi) a significant increase in MHC-II-IRI, which was higher in the IR and PR; and (vii) the Müller glia were GFAP+ and MHC-II+. In conclusion, in this model of glaucoma, there is a bilateral macroglial activation maintained over time involved in the inflammatory glaucoma process.

15.
J Pers Med ; 12(5)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35629270

RESUMO

Having a family history (FH+) of Alzheimer's disease (AD) and being a carrier of at least one ɛ4 allele of the ApoE gene are two of the main risk factors for the development of AD. AD and age-related macular degeneration (AMD) share one of the main risk factors, such as age, and characteristics including the presence of deposits (Aß plaques in AD and drusen in AMD); however, the role of apolipoprotein E isoforms in both pathologies is controversial. We analyzed and characterized retinal drusen by optical coherence tomography (OCT) in subjects, classifying them by their AD FH (FH- or FH+) and their allelic characterization of ApoE ɛ4 (ApoE ɛ4- or ApoE ɛ4+) and considering cardiovascular risk factors (hypercholesterolemia, hypertension, and diabetes mellitus). In addition, we analyzed the choroidal thickness by OCT and the area of the foveal avascular zone with OCTA. We did not find a relationship between a family history of AD or any of the ApoE isoforms and the presence or absence of drusen. Subjects with drusen show choroidal thinning compared to patients without drusen, and thinning could trigger changes in choroidal perfusion that may give rise to the deposits that generate drusen.

18.
J Clin Med ; 10(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34768320

RESUMO

Cytokine- and chemokine-mediated signalling is involved in the neuroinflammatory process that leads to retinal ganglion cell (RGC) damage in glaucoma. Substances with anti-inflammatory properties could decrease these cytokines and chemokines and thus prevent RGC death. The authors of this study analysed the anti-inflammatory effect of a hydrophilic saffron extract standardized to 3% crocin content, focusing on the regulation of cytokine and chemokine production, in a mouse model of unilateral laser-induced ocular hypertension (OHT). We demonstrated that following saffron treatment, most of the concentration of proinflammatory cytokines (IL-1ß, IFN-γ, TNF-α, and IL-17), anti-inflammatory cytokines (IL-4 and IL-10), Brain-derived Neurotrophic Factor (BDNF), Vascular Endothelial Growth Factor (VEGF), and fractalkine were unaffected in response to laser-induced OHT in both the OHT eye and its contralateral eye. Only IL-6 levels were significantly increased in the OHT eye one day after laser induction compared with the control group. These results differed from those observed in animals subjected to unilateral OHT and not treated with saffron, where changes in cytokine levels occurred in both eyes. Therefore, saffron extract regulates the production of proinflammatory cytokines, VEGF, and fractalkine induced by increasing intraocular pressure (IOP), protecting the retina from inflammation. These results indicate that saffron could be beneficial in glaucoma by helping to reduce the inflammatory process.

19.
J Pers Med ; 11(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34442352

RESUMO

Friedreich ataxia (FRDA) is a progressive neurodegenerative disease caused by a severe autosomal recessive genetic disorder of the central nervous (CNS) and peripheral nervous system (PNS), affecting children and young adults. Its onset is before 25 years of age, with mean ages of onset and death between 11 and 38 years, respectively. The incidence is 1 in 30,000-50,000 persons. It is caused, in 97% of cases, by a homozygous guanine-adenine-adenine (GAA) trinucleotide mutation in the first intron of the frataxin (FXN) gene on chromosome 9 (9q13-q1.1). The mutation of this gene causes a deficiency of frataxin, which induces an altered inflow of iron into the mitochondria, increasing the nervous system's vulnerability to oxidative stress. The main clinical signs include spinocerebellar ataxia with sensory loss and disappearance of deep tendon reflexes, cerebellar dysarthria, cardiomyopathy, and scoliosis. Diabetes, hearing loss, and pes cavus may also occur, and although most patients with FRDA do not present with symptomatic visual impairment, 73% present with clinical neuro-ophthalmological alterations such as optic atrophy and altered eye movement, among others. This review provides a brief overview of the main aspects of FRDA and then focuses on the ocular involvement of this pathology and the possible use of retinal biomarkers.

20.
Life (Basel) ; 11(7)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34357083

RESUMO

Preclinical Alzheimer's disease (AD) includes cognitively healthy subjects with at least one positive biomarker: reduction in cerebrospinal fluid Aß42 or visualization of cerebral amyloidosis by positron emission tomography imaging. The use of these biomarkers is expensive, invasive, and not always possible. It has been shown that the retinal changes measured by optical coherence tomography (OCT) and OCT-angiography (OCTA) could be biomarkers of AD. Diagnosis in early stages before irreversible AD neurological damage takes place is important for the development of new therapeutic interventions. In this review, we summarize the findings of different published studies using OCT and OCTA in participants with preclinical AD. To date, there have been few studies on this topic and they are methodologically very dissimilar. Moreover, these include only two longitudinal studies. For these reasons, it would be interesting to unify the methodology, make the inclusion criteria more rigorous, and conduct longer longitudinal studies to assess the evolution of these subjects. If the results were consistent across repeated studies with the same methodology, this could provide us with insight into the value of the retinal changes observed by OCT/OCTA as potential reliable, cost-effective, and noninvasive biomarkers of preclinical AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...